If it's not what You are looking for type in the equation solver your own equation and let us solve it.
6x^2-35x-1=0
a = 6; b = -35; c = -1;
Δ = b2-4ac
Δ = -352-4·6·(-1)
Δ = 1249
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-35)-\sqrt{1249}}{2*6}=\frac{35-\sqrt{1249}}{12} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-35)+\sqrt{1249}}{2*6}=\frac{35+\sqrt{1249}}{12} $
| -14=-8x | | 14x-6(3x+10)=7x-5 | | 82x=-1701 | | (x/16.7)*100=50 | | 9-(3+2x)=-16 | | x^+12×+20=0 | | x/16.7*100=50 | | x/5+7=3x/5 | | 3y+5y+6=26 | | 7(v-4=3(3+v)-1 | | (-14)=r*6 | | -h^2-4h+32=0 | | 4+7(1-6x)=-283 | | 5x+7x+15-3=180 | | X/15=-x | | X/15=-x/1 | | 20t=16(20t)+20 | | 1/2+4=2/3x | | (2/3)x^-1/3=1 | | 5-(2y)6+7(6)=5 | | F(2x)=|2x|+13 | | x^2+(x-5)^2=(-10)^2 | | 490-5y=9y | | 2/9y+19=27 | | 5(3n+6)=53 | | 300-2x=102 | | 1/8y+1/3=3/8 | | 2-3(x+4)=9-3+2x) | | 0.50x0.05(20-x)=0.10(-26) | | x/7+6=14 | | b-5=7*4 | | 666-4x=888-7x |